Martin, R. B. \& Edsall, J. T. (1960). J. Amer. Chem. Soc. 82, 1107.
Maunthner, M. (1913). S. B. Akad. Wiss. Wien, 122, Abt. IIb, 269; Mh. Chem. 34, 883.
Nakamoto, K. (1963a). Infrared Spectra of Coordination Compounds, p.206. New York: John Wiley.
Nakamoto, K. (1963b). Infrared Spectra of Coordination Compounds, p.204. New York: John Wiley.
Orgel, L. E. (1960). Introduction to Transition Metal Chemistry, p.80. London: Methuen.
Prout, C. K. \& Wiseman, T. J. (1964). J. Chem. Soc. p. 497.

Rabin, B. R. (1956). Trans. Faraday Soc. 52, 1134.

Rabin, B. R. (1958). In Metals and Enzyme Activity, p. 21. Crook, E. M., Ed. Biochemical Society Symposia No. 15, Cambridge Univ. Press.
Rosenberg, A. (1956). Acta Chem. Scand. 10, 840.
Rosenberg, A. (1960). Arch. Biochem. Biophys. 88, 83; Biochim. Biophys. Acta, 45, 297.
Rosenberg, A. (1961). Ark. Kemi, 17, 25.
Rossotti, F. J. C. \& Rossotti, H. (1961). The Determination of Stability Constants, p.40. New York: McGrawHill.
Strandberg, B., Lindqvist, I. \& Rosenstein, R. (1961). Z. Kristallogr. 116, 266.

Tomita, K. (1961). Bull. Chem. Soc. Japan, 34, 297.

Acta Cryst. (1967). 22, 417

The Crystal Structure of $\mathbf{R h}_{17} \mathbf{G e}_{22}$, an Example of a New Kind of Electron Compound.

By W.Jeitschko and E.Parthé
School of Metallurgical Engineering and Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, U.S.A.

(Received 16 June 1966)

Abstract

$\mathrm{Rh}_{17} \mathrm{Ge}_{22}$ crystallizes with a tetragonal unit cell of unusual dimensions with $a=5 \cdot 604$, and $c=78.45 \AA$. One unit cell contains 68 Rh and 88 Ge atoms which are arranged in a new kind of 'superstructure'. The superstructure has two different substructures of different cell dimensions, one being formed by the Rh atoms, the other by the Ge atoms.

A number of structurally related transition metal silicides, germanides and gallides are known having the same pair of substructures but with different relative dimensions. It is shown that the relative subcell dimensions are controlled by the available valence electrons. These electron compounds offer a unique case where the relative valence electron contribution of the transition elements can be determined simply by a measurement of the X-ray diffraction line positions. The obtained values can then be used to calculate the compositions of new transition metal compounds.

Introduction

In the system rhodium-germanium there exist four different compounds: $\mathrm{Rh}_{2} \mathrm{Ge}, \mathrm{Rh}_{5} \mathrm{Ge}_{3}, \mathrm{RhGe}$ and a germanium rich phase. The crystal structures of the first three have been determined by Geller (1955). Zhuravlev \& Zhdanov (1956) determined the composition of the fourth germanide as $\mathrm{Rh}_{3} \mathrm{Ge}_{4}$ and they reported also a tetragonal unit cell with $a=5 \cdot 7 \pm 0 \cdot 2$ and $c=10 \cdot 0 \pm$ $0.3 \AA$. In connection with earlier studies on the structure of the transition metal disilicides (Nowotny, Kudielka \& Parthé, 1956; Duffin, Parthé \& Norton, 1964), we found it of interest to study the crystal structure of the remaining rhodium germanide, which we expected initially to be a digermanide.

Experimental

The rhodium germanide needed for this investigation could be prepared by different methods. One method was to melt mixtures of elementary Rh and Ge in graphite crucibles under a purified Ar atmosphere in an induction furnace. Compressed powder mixtures
were also melted without crucibles in an arc melting furnace. These methods produced a well crystallized material from which it was not difficult to pick appropriate single crystals. Microcrystalline material for powder diffraction patterns was obtained from Rh and Ge powder mixtures sintered in evacuated quartz tubes at 700° for 4 weeks. To avoid a violent initial reaction between the starting materials, it was found useful to raise the temperature gradually to $700^{\circ} \mathrm{C}$ over a week.

The presence of Ge lines in powder patterns of alloys composed as RhGe_{2} indicated that the new phase was not a digermanide. X-ray and metallographic investigations of samples covering a range in Ge content showed that the true composition must be close to $\mathrm{RhGe}_{1 \cdot 3}$ as suggested by Zhuravlev \& Zhdanov (1956).

Powder and single-crystal diffraction techniques have been used for this structure study. For the determination of the crystal structure, intensities were recorded photographically with Mo $K \alpha$ radiation on a Nonius integrating Weissenberg camera using the multiple film technique and equi-inclination setting. To reduce the intensity of the diffracted beam we used copper foils of 0.001 inch thickness between the films. Very
weak reflections were estimated from nonintegrated Weissenberg photographs taken with Mo $K \alpha$ and Co $K \alpha$ radiation.

The single crystal used for these photographs had the shape of a needle with a rectangular cross section $(0.025 \times 0.030 \times 0.14 \mathrm{~mm})$. The crystal was rotated around the needle axes which proved to be the [110] axis. The intensities were estimated visually by using an intensity strip with spots scaled for 10% intensity difference. The scale factor between the integrated films was found to be on the average 3.02 between first and second film and 3.92 between second and third film. The difference in scale factors of 30% is apparently caused by the fluorescence of the copper foils. The middle film obtains fluorescent radiation from two adjacent copper foils and is darkened more relative to the first, and third film, in contact only with one copper foil. The intensities of all strong, medium and weak spots could be measured conveniently on integrated Weissenberg photographs and were corrected for Laue streaks; however, the pattern contained a considerable number of extremely weak reflections which could not be recorded on integrating Weissenberg photographs because of the increase in background for longer exposures. The intensities of those reflections - about 50% of the total - had to be measured on unintegrated Weissenberg photographs. To correct for spot extension and contraction the average of the intensities of the symmetry related spots was used (Kaane \& Cole, 1949). The absorption correction was made on the assumption that the crystal has a cylindrical shape with $\mu R=0 \cdot 5$ (Table 5.3.5 B in International Tables for X-ray Crystallography, Vol. II). To reduce the errors in the absorption correction due to deviation of the actual crystal shape from a cylinder, which could have amounted to 20%, all symmetry related reflections were measured and compared and an average intensity value was obtained. The zero and three upper level photographs were evaluated and intensities of 435 independent reflections were collected and used for the refinement.

Determination of the unit cell

The strong lines of the powder pattern of the rhodium germanide could be indexed with a tetragonal cell with $a=5.604 \pm 0.002 \AA$ and $c=4.615 \pm 0.003 \AA$. However, a number of reflections remained which could not be indexed with this cell. By using precession photographs, it was found that the rhodium germanide has tetragonal symmetry with the above given translation period of $5 \cdot 604 \AA$ in its base plane. Other precession photographs containing the $h k l$ reflections showed an arrangement of diffraction spots in which each of the strong spots fitted one or the other of two different reciprocal lattices which had the same tetragonal a axis but no simple common relationship in their c translation $\left(c_{\mathrm{I}}=4.61, c_{\mathrm{II}}=3.56 \AA\right.$). Considering all the weaker diffraction spots on the Weissenberg and precession photographs one had to assume a very long c axis. In
principle it is possible to determine the true length of the c axis from the position of the diffraction spots on the Weissenberg or precession photographs. However, for very long translation periods and short distances on the film such measurements are inaccurate. We relied therefore on the very accurately measured θ values from Guinier powder photographs and on the fact that the true c axis must be a multiple of the above reported translation periods c_{I} and c_{II}. A redetermination of these subtranslation periods using powder data gave $c_{\mathrm{I}}=4.615$ and $c_{\mathrm{II}}=3.566 \AA$. The true c axis was found to be 17 times $c_{\text {I }}$ or 22 times $c_{\text {II }}$. The final unitcell data of the tetragonal rhodium germanide are thus:

$$
a=5.604 \pm 0.002, c=78.45 \pm 0.04 \AA .
$$

With these data it was possible to index uniquely every diffraction spot on the single-crystal and powder photographs.

Owing to the unusually large value of the c axis and the considerable number of unobserved reflections we considered the possibility of twinning. However, a study of polished and etched (concentrated nitric acid) specimens under the metal microscope with polarized light gave no indication of polysynthetic twins.

Determination of the crystal structure

It has been mentioned that most of the strong lines of the powder pattern could be indexed with a tetragonal unit cell with $a=5.604$ and $c_{\mathrm{I}}=4.615 \AA$ which is a subcell of the true cell. If one considers only those strong reflections which correspond to this subcell and determines the conditions for possible reflections one finds: $h k l$ only with $h+k+l=2 n, h k 0$ only with $h=2 n$ and $h h l$ only with $2 h+l=4 n$. The only possible space group for the subcell is $I 4_{1} /$ amd $\left(D_{4 h}^{19}\right)$, which has two equivalent fourfold, three eightfold and other more-fold point positions. From the experimental density of 9.0 g.cm ${ }^{-3}$ and the size of the subcell one can conclude that this cell contains on the average four formula units $\mathrm{RhGe}_{1 \cdot 3}$, that is four Rh atoms and 5.2 Ge atoms. Assuming that the subcell is caused by the arrangement of the Rh atoms only one can place the 4 Rh atoms in equipoint $4(a): 000,0 \frac{1}{2} \frac{1}{4} ;+\left[000, \frac{1}{2} \frac{1}{2} \frac{1}{2}\right]$, which corresponds to the atom arrangement in the white tin $(A 5)$ structure type. There are no other possibilities except $4(b)$, which gives an identical arrangement. An intensity calculation was made for the subcell, assuming only the presence of these 4 Rh atoms. Except for reflections with very high l values the intensities calculated for the subcell agreed well for all subcell reflections. This successful interpretation of the subcell was a decisive step for the solution of the crystal structure. From the size of the big unit cell it could be already concluded that there are 68 (17 times 4) Rh atoms in the unit cell. For the positioning of the Rh atoms in the long cell we were guided by the prominence of the subcell diffraction line and made the assumption that Rh subcells are stacked one on
top of the other without any change in x or y, seventeen altogether in one unit cell.

Using the experimental density value one can calculate that the second, smaller subcell $(a=5 \cdot 604 \AA$ and $c_{\text {II }}=3 \cdot 566 \AA$) must contain on the average $3 \cdot 1$ formula units $\mathrm{RhGe}_{1 \cdot 3}$, that is four Ge atoms per subcell. Again we considered the reflections from the subcell and found from the systematic extinctions that the structure of this subcell must be face centered tetragonal. Assuming that the Ge atoms are responsible for the occurrence of these subcell reflections one can conclude that the four Ge atoms are centered in every subcell about positions: $000+\left[\frac{1}{2} \frac{1}{2} 0 C\right]$ or $\frac{1}{4} \frac{1}{4} \frac{1}{4}+\left[\frac{1}{2} \frac{1}{2} 0 C\right]$.

However, in contrast to the Rh subcell lines, the Ge subcell reflections rapidly lose intensity if the l value is large. Thus one can conclude that the Ge atom arrangement within the Ge subcell is face centered only to a first approximation. There are 22 Ge subcells in one long unit cell; therefore one unit cell of the rhodium germanide contains 68 Rh and 88 Ge atoms. The composition $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$ expressed as a fraction is $\mathrm{RhGe}_{1 \cdot 2941}$ which agrees well with the value $\mathrm{RhGe}_{1 \cdot 3}$ obtained by metallographic examination.

Considering all of the observed diffraction lines of the long unit cell of $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$ one can formulate the conditions for possible reflections as: hkl only with

Table 1. Powder intensity calculation for $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$

	Subcell indices				Cr	ion				$I_{\text {cal }}$	$I_{\text {obs }}$
$h k l$	Rh	Ge	$10^{3} \cdot \sin ^{2} \theta_{c}$	Ical	$I_{\text {obs }}$	h k l	Rh	Ge	$10^{3} \cdot \sin ^{2} \theta_{c}$		
004			$3 \cdot 4$	$0 \cdot 5$		2117	211		$270 \cdot 5$	$234 \cdot 2$	vst
008			$13 \cdot 6$	$0 \cdot 2$		1033			274.0	$0 \cdot 0$	
0012			$30 \cdot 7$	$0 \cdot 2$		1130			$275 \cdot 5$	$0 \cdot 3$	
101			$42 \cdot 0$	$0 \cdot 1$		0036			$276 \cdot 3$	$0 \cdot 0$	
103			$43 \cdot 7$	$0 \cdot 6$		2119			$285 \cdot 9$	$0 \cdot 2$	
105			$47 \cdot 1$	$0 \cdot 0$		2024			$289 \cdot 9$	6.9	vvvw
107			$52 \cdot 2$	$5 \cdot 3$	vovw	2121			302-9	$0 \cdot 3$	
0016			$54 \cdot 6$	$0 \cdot 2$		1035			$303 \cdot 0$	$0 \cdot 1$	
109			59.1	$0 \cdot 0$		2026			311.3	$0 \cdot 1$	
1011			$67 \cdot 6$	$0 \cdot 1$		2123			321.7	$0 \cdot 1$	
1013			77.8	$0 \cdot 1$		1134	112		$330 \cdot 0$	116.4	st
112			$84 \cdot 4$	$0 \cdot 4$		1037			$333 \cdot 7$	$0 \cdot 3$	
0020			$85 \cdot 3$	$1 \cdot 3$		220	220	220	334.3	82.6	mst
1015			89.8	$0 \cdot 1$		2028			$334 \cdot 3$	$0 \cdot 1$	
116			91.2	$0 \cdot 1$		224			$337 \cdot 7$	$0 \cdot 0$	
1017	101		$103 \cdot 4$	101.6		0040			$341 \cdot 1$	$0 \cdot 2$	
1110			$104 \cdot 9$	15.2 \}	$s t$	2125			$342 \cdot 2$	$0 \cdot 8$	
1019			118.8	$0 \cdot 4$		228			$347 \cdot 9$	$0 \cdot 2$	
0024			$122 \cdot 9$	$0 \cdot 4$		2030			$359 \cdot 0$	$0 \cdot 1$	
1114			125.4	$0 \cdot 1$		2127			$364 \cdot 3$	$21 \cdot 4\}$	
1021			$135 \cdot 8$	$0 \cdot 0$		2212			365.0	$9.4\}$	w
1118			$152 \cdot 6$	$0 \cdot 3$		1039			$366 \cdot 1$	$0 \cdot 1$	
1023			154.6	$0 \cdot 3$		301			$376 \cdot 3$	$0 \cdot 0$	
200	200	200	$167 \cdot 1$	31.7	m	303			378.0	$0 \cdot 1$	
0028			167.2	$0 \cdot 0$		305			$381 \cdot 4$	$0 \cdot 0$	
202			168.0	$0 \cdot 1$		2032			$385 \cdot 5$	$0 \cdot 0$	
204			$170 \cdot 5$	$0 \cdot 0$		307			$386 \cdot 5$	1.0	
206			$174 \cdot 8$	$0 \cdot 0$		2129			388.2	1.5	
1025			$175 \cdot 0$	$0 \cdot 0$		2216			388.8	$0 \cdot 1$	
208			$180 \cdot 8$	$0 \cdot 1$		1138			391.4	$0 \cdot 2$	
1122		111	$186 \cdot 8$	$123 \cdot 5$		309			$393 \cdot 3$	$0 \cdot 0$	
2010			188.5	$6 \cdot 2$ \}	st	1041			$400 \cdot 2$	$4 \cdot 7$	
1027			$197 \cdot 2$	3.9		3011			$401 \cdot 8$	$0 \cdot 1$	
2012			$197 \cdot 8$	$0 \cdot 1$		3013			$412 \cdot 0$	$0 \cdot 0$	
2014			208.9	$0 \cdot 0$		0044		002	$412 \cdot 8$	$24 \cdot 1$	w
211			$209 \cdot 1$	$0 \cdot 2$		2034			$413 \cdot 6$	$1 \cdot 1$	
213			$210 \cdot 8$	$0 \cdot 3$		2131			$413 \cdot 8$	$0 \cdot 0$	
215			214.2	$79 \cdot 3$	mst	310			$417 \cdot 8$	$0 \cdot 1$	
0032			218.3	$0 \cdot 0$		312			418.7	$0 \cdot 2$	
217			219.4	1.9		2220			$419 \cdot 5$	$0 \cdot 1$	
1029			$221 \cdot 0$	$0 \cdot 0$		314			$421 \cdot 2$	$0 \cdot 3$	
2016			221.7	$0 \cdot 1$		3015			$424 \cdot 0$	$0 \cdot 1$	
219			$226 \cdot 2$	$0 \cdot 3$		316			$425 \cdot 5$	$0 \cdot 2$	
1126			227.7	$0 \cdot 1$		318			$431 \cdot 5$	$0 \cdot 0$	
2111			$234 \cdot 7$	$0 \cdot 1$		1043			$436 \cdot 0$	$0 \cdot 2$	
2018			$236 \cdot 2$	$0 \cdot 1$		3017	301		$437 \cdot 7$	$105 \cdot 5$	st
2113			$244 \cdot 9$	$0 \cdot 4$		3110			$439 \cdot 1$	$2 \cdot 0$	
1031			$246 \cdot 7$	$0 \cdot 3$		2133			$441 \cdot 1$	$0 \cdot 1$	
2020			$252 \cdot 4$	$0 \cdot 4$		2036			$443 \cdot 5$	0.0	
2115			256.9	$0 \cdot 0$		3112			$448 \cdot 5$	$6 \cdot 8$	vovw
2022			$270 \cdot 3$	$0 \cdot 1$							

$h+k+l=2 n, h k 0$ only with $h=2 n$ and $h h l$ only with $2 h+l=4 n$. These conditions are the same as the ones for the Rh atom subcell which led to the unique space group $I 4_{1} /$ amd $\left(D_{4 h}^{19}\right)$. The arrangement for the Rh atoms was already predetermined from the intensity considerations of the first subcell. It is possible to find such an atomic arrangement for the Rh atoms in this space group [equipoint $4(a)$ and eight times equipoint 8(e)]; however, there are no equipoints available to place the Ge atoms in the space left open by the Rh atoms. Thus, it had to be assumed that some of the supposed extinctions are not systematic extinctions; rather, the intensities of the particular reflections are very weak owing to the special nature of the structure. Tentatively we relaxed the extinction law which affected the least number of reflections: $h k 0$ with $h=2 n$ only. The possible space groups are then $I 4_{1} m d\left(C_{4 v}^{11}\right)$ and $I \overline{4} 2 d\left(D_{2 d}^{12}\right)$. Assuming the latter the Rh atoms were placed in $4(a)$ and eight times $8(c)$ with tentative z parameters: $4 / 68,8 / 68,12 / 68,16 / 68,20 / 68,24 / 68$, $28 / 68,32 / 68$. For the Ge atoms there remained as the only choice equipoint $8(d)$ and five times equipoint 16(e) with approximate z parameters: $1 / 88,3 / 88,5 / 88$, $7 / 88,9 / 88,11 / 88$. Thus always two Ge atoms occur at the same height. For the determination of the x and y parameters of $16(e)$ and the x parameter of $8(d)$ the question arose how these Ge pairs are stacked on top of the next, either parallel or crossed. It was shown above that one could conclude from the small Ge-atom subcell that the arrangement of the Ge atoms in the subcell is almost face centered; that means that the two Ge pairs of each subcell are in a crossed position. For the whole structure consisting of 22 Ge subcells stacked one on top of the next one could assume 44 Ge pairs each crossed with respect to their neighbors with approximate x and y values for $16(e)$ of $\pm \frac{1}{4}$. Geometrical considerations assuming a Rh radius of $1.34 \AA$ and a Ge radius of $1.39 \AA$ suggested that the Ge atom pairs are slightly rotated away from the ideal positions, resulting in a new set of x and y values for the Ge atoms. A preliminary intensity calculation with these data gave such good agreement with the observed powder
data that it had to be concluded that the proposed structure was essentially correct. A powder intensity calculation using the refined parameters is given in Table l. (The powder intensity computer program by Jeitschko \& Parthé (1966) was used.) One notices that with few exceptions all the strong lines correspond to either the Rh or the Ge subcell. The respective subcell Miller indices are shown in the second and third columns.

Structure refinement

The structure was refined on an IBM 7040 computer using a full-matrix least-squares program originally written by Gantzel, Sparks \& Trueblood (1961), later revised by Okaya. Owing to the large number of unobserved reflections the structure could be refined only if the unobserved reflections also were included in the least-squares program. The program was altered somewhat to allow the inclusion of unobserved reflections in the least-squares refinement in all instances where the calculated structure factors were stronger than the limit of observation. The function minimized was $\Sigma \omega^{2}(\Delta F)^{2}$ with $\omega=c / F_{\text {obs }} ; c$ was $1 \cdot 0$ for the more intense reflections (about 50% of the total observed) decreasing gradually to 0.5 for the unobserved reflections.

For the initial cycle, scale factors for the four layer lines were obtained by comparing observed and calculated F values of the strong reflections of the Rh subcell, which are relatively insensitive to shifts of the free parameters. Isotropic temperature factors were obtained by a graphical method described by Buerger (1960). Because of the special feature of the structure it is possible to obtain temperature factors for Rh and Ge atoms separately (there are enough reflections due almost entirely to one kind of atom).

A total of 25 parameters (24 positional parameters and one scale factor) were refined in the main cycles. After three subsequent main cycles, the program was used to refine a scale factor for each layer line separately (by fixing all positional parameters). At these stages the temperature factors were redetermined by

Table 2. The final parameters of $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$ and their standard deviations

	x	y	z
Rh (1) in 8(c)	0	0	$0.05761(0.00008)$
Rh (2) in 8(c)	0	0	$0 \cdot 11971(0 \cdot 00010)$
Rh (3) in 8(c)	0	0	$0 \cdot 17446$ (0.00011)
Rh (4) in 8(c)	0	0	$0 \cdot 23702(0.00016)$
$\mathrm{Rh}(5)$ in 8(c)	0	0	$0 \cdot 29322$ (0.00010)
Rh (6) in 8(c)	0	0	$0.35252(0.00017)$
Rh (7) in 8(c)	0	0	$0.41361(0.00008)$
Rh (8) in 8(c)	0	0	0.46830 (0.00011)
$\mathrm{Rh}(9)$ in 4(a)	0	0	0
$\mathrm{Ge}(1)$ in $16(e)$	0.3466 (0.0017)	0.2170 (0.0015)	$0 \cdot 01180$ (0.00006)
Ge (2) in 16(e)	$0 \cdot 8462(0.0018)$	$0 \cdot 1934$ (0.0017)	0.03147 (0.00007)
Ge (3) in 16(e)	$0 \cdot 3094(0 \cdot 0027)$	$0 \cdot 3375$ (0.0026)	0.05789 (0.00007)
Ge (4) in $16(e)$	$0.7279(0.0015)$	$0 \cdot 1451(0 \cdot 0017)$	0.07835 (0.00006)
Ge (5) in 16(e)	$0 \cdot 1786$ (0.0023)	$0 \cdot 3246$ (0.0026)	$0 \cdot 10265(0.00008)$
$\mathrm{Ge}(6)$ in $8(d)$	$0 \cdot 6475$ (0.0025)	$\frac{1}{4}$	$\frac{1}{8}$

Table 3. Calculated and observed structure factors of $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$
Reading from left to right, the columns contain the values $l, 0 \cdot 1\left|F_{\text {cal }}\right|, 0 \cdot 1\left|F_{\text {obs }}\right|$.

Table 4. Interatomic distances in the structure of $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$
All distances shorter than $3.5 \AA$ are listed.

Rh (1)	Mean*				Mean*		
				2 Rh (5)	$3.02 \pm 0.01\}$	3.08	
	$2 \mathrm{Ge}(2)$	2.47 ± 0.02	$2 \cdot 47$	2 Rh (3)	$3 \cdot 14 \pm 0.01\}$	3.08	
		$2 \cdot 57 \pm 0.02$					
Rh (2)	2 Ge (6)	2.46 ± 0.01	$2 \cdot 50$	$\begin{aligned} & 2 \mathrm{Rh}(2) \\ & 2 \mathrm{Rh}(6) \end{aligned}$	$2.92 \pm 0.01\}$	$3 \cdot 01$	
	${ }_{2} \mathrm{Ge}(5)$	2.47 ± 0.03			$3 \cdot 11 \pm 0.01\}$		
	2 Ge (5')	2.58 ± 0.03					
Rh (3)	2 Ge (3)	2.40 ± 0.03	2•49	$\begin{aligned} & 2 \operatorname{Rh}(7) \\ & 2 \operatorname{Rh}(1) \end{aligned}$	$\left.\begin{array}{l} 2.93 \pm 0.01 \\ 3.14 \pm 0.01 \end{array}\right\}$	$3 \cdot 04$	
	${ }_{2} \mathrm{Ge}$ (4)	2.52 ± 0.02					
	2 Ge (5)	2.55 ± 0.02					
Rh (4)	2 Ge (2)	2.41 ± 0.02	$2 \cdot 46$	$\begin{aligned} & 2 \operatorname{Rh}(9) \\ & 2 \operatorname{Rh}(8) \end{aligned}$	$\left.\begin{array}{l} 2.98 \pm 0.01 \\ 3.16 \pm 0.02 \end{array}\right\}$	$3 \cdot 07$	
	${ }_{2} \mathrm{Ge}(1)$	2.45 ± 0.02					
	$2 \mathrm{Ge}\left(1^{\prime}\right)$	2.51 ± 0.02					
Rh (5)	2 Ge (2)	2.41 ± 0.02	$2 \cdot 58$	$\begin{aligned} & 2 \mathrm{Rh}(8) \\ & 2 \mathrm{Rh}(1) \end{aligned}$	$\left.\begin{array}{l} 2.94 \pm 0.01 \\ 3.02 \pm 0.01 \end{array}\right\}$	$2 \cdot 98$	
	2 Ge (3)	2.46 ± 0.02					
	2 Ge (1)	2.88 ± 0.02					
	2 Ge (4)	$3 \cdot 14 \pm 0 \cdot 02$					
$\mathrm{Rh}(6)$	2 Ge (6)	2.40 ± 0.02	$2 \cdot 46$	$\begin{aligned} & 2 \operatorname{Rh}(7) \\ & 2 \operatorname{Rh}(2) \end{aligned}$	$\left.\begin{array}{l} 3 \cdot 07 \pm 0.02 \\ 3 \cdot 11 \pm 0.01 \end{array}\right\}$	$3 \cdot 09$	
	$2 \mathrm{Ge}(4)$	2.43 ± 0.02					
	2 Ge (5)	2.56 ± 0.02					
Rh (7)		2.42 ± 0.02	$2 \cdot 50$	$\begin{aligned} & 2 \operatorname{Rh}(3) \\ & 2 \operatorname{Rh}(6) \end{aligned}$	$\left.\begin{array}{l} 2.93 \pm 0.01 \\ 3.07 \pm 0.02 \end{array}\right\}$	$3 \cdot 00$	
	2 Ge (4)	2.45 ± 0.02					
	2 Ge (3)	2.64 ± 0.02					
		3.44 ± 0.02					
Rh (8)	2 Ge (1)	2.39 ± 0.02	$2 \cdot 49$	$\begin{aligned} & 2 \mathrm{Rh}(5) \\ & 2 \mathrm{Rh}(4) \end{aligned}$	$\left.\begin{array}{l}2.94 \pm 0.01 \\ 3 \cdot 16 \pm 0.02\end{array}\right\}$	$3 \cdot 05$	
	2 Ge (3)	2.49 ± 0.03					
	2 Ge (2)	$2.59 \pm 0.02\}$					
Rh (9)	$\begin{aligned} & 4 \mathrm{Ge}(1) \\ & 4 \mathrm{Ge}(2) \end{aligned}$	2.47 ± 0.02	$2 \cdot 59$	4 Rh (4)	$2.98 \pm 0.01\}$A	$2 \cdot 98$	
		$2 \cdot 83 \pm 0.02\}$					
		Average $\mathrm{Rh}-\mathrm{Ge}$ distance $2 \cdot 50_{4}$				Average $\mathrm{Rh}-\mathrm{Rh}$ distance 3.03_{3}	
Ge (1)	1 Rh (8)	2.39 ± 0.02		1 Ge (2)	2.97 ± 0.03		
	1 Rh (4)	2.45 ± 0.02		1 Ge (1)	2.98 ± 0.03		
	$1 \mathrm{Rh}(9)$	2.47 ± 0.02		$1 \mathrm{Ge}\left(1^{\prime}\right)$	3.15 ± 0.03		
	$1 \mathrm{Rh}\left(4^{\prime}\right)$	2.51 ± 0.02		$1 \mathrm{Ge}\left(1^{\prime \prime}\right)$	$3 \cdot 17 \pm 0.03$		
	$1 \mathrm{Rh}(5)$	2.88 ± 0.02		$1 \mathrm{Ge}\left(2^{\prime}\right)$	$3 \cdot 20 \pm 0.03$		
				1 Ge (2")	$3 \cdot 20 \pm 0.03$		
$\mathrm{Ge}(2)$	1 Rh (4)	2.41 ± 0.02			2.77 ± 0.03		
	1 Rh (5)	2.41 ± 0.02		1 Ge (1)	2.97 ± 0.03		
	1 Rh (1)	2.47 ± 0.02		$1 \mathrm{Ge}\left(1^{\prime}\right)$	3.20 ± 0.03		
	1 Rh (8)	2.59 ± 0.02		1 Ge (1) ${ }^{\prime \prime}$	3.20 ± 0.03		
	1 Rh (9)	$2 \cdot 83 \pm 0.02$		1 Ge (3)	3.42 ± 0.03		
				$1 \mathrm{Ge}\left(3^{\prime}\right)$	3.46 ± 0.03		
Ge (3)	1 Rh (3)	2.40 ± 0.03		1 Ge (3)	2.81 ± 0.04		
	1 Rh (5)	2.46 ± 0.02		1 Ge (4)	3.04 ± 0.04		
	$1 \mathrm{Rh}(8)$	2.49 ± 0.03		$1 \mathrm{Ge}\left(4^{\prime}\right)$	3.15 ± 0.03		
	$1 \mathrm{Rh}(1)$	2.57 ± 0.02		$1 \mathrm{Ge}\left(4^{\prime \prime}\right)$	3.32 ± 0.03		
	1 Rh (7)	$2 \cdot 64 \pm 0.02$		1 Ge (2)	3.42 ± 0.03		
				$1 \mathrm{Ge}\left(2^{\prime}\right)$	3.46 ± 0.03		
Ge (4)	$1 \mathrm{Rh}(1)$	2.37 ± 0.02		1 Ge (4)	3.03 ± 0.03		
	1 Rh (6)	2.43 ± 0.02		1 Ge (3)	3.04 ± 0.04		
	1 Rh (7)	2.45 ± 0.02		$1 \mathrm{Ge}\left(3^{\prime}\right)$	3.15 ± 0.03		
	1 Rh (3)	2.52 ± 0.02		1 Ge (5)	3.29 ± 0.04		
	1 Rh (5)	$3 \cdot 14 \pm 0 \cdot 02$		$1 \mathrm{Ge}\left(3^{\prime \prime}\right)$	3.32 ± 0.03		
				$1 \mathrm{Ge}\left(5^{\prime}\right)$	3.32 ± 0.04		
				$1 \mathrm{Ge}\left(4^{\prime}\right)$	$3 \cdot 46 \pm 0.03$		

Table 4 (cont.)

Ge (5)	$1 \mathrm{Rh}(7)$	2.42 ± 0.02
	$1 \mathrm{Rh}(2)$	2.47 ± 0.03
	$1 \mathrm{Rh}(3)$	2.55 ± 0.02
	$1 \mathrm{Rh}(6)$	2.56 ± 0.02
	$1 \mathrm{Rh}\left(2^{\prime}\right)$	2.58 ± 0.03
Ge (6)	$2 \mathrm{Rh}(6)$	2.40 ± 0.02
	$2 \mathrm{Rh}(2)$	2.46 ± 0.01
	$2 \mathrm{Rh}(7)$	3.44 ± 0.02

$1 \mathrm{Ge}(5)$	$2 \cdot 81 \pm 0 \cdot 04$
$1 \mathrm{Ge}(6)$	$3 \cdot 12 \pm 0.02$
$1 \mathrm{Ge}\left(6^{\prime}\right)$	$3 \cdot 19 \pm 0.03$
$1 \mathrm{Ge}(4)$	$3 \cdot 29 \pm 0.04$
$1 \mathrm{Ge}\left(4^{\prime}\right)$	$3 \cdot 32 \pm 0.04$
$1 \mathrm{Ge}\left(6^{\prime \prime}\right)$	$3 \cdot 48 \pm 0.03$
$2 \mathrm{Ge}(5)$	$3 \cdot 12 \pm 0.02$
$2 \mathrm{Ge}\left(5^{\prime}\right)$	$3 \cdot 19 \pm 0.03$
$2 \mathrm{Ge}(6)$	$3 \cdot 25 \pm 0.02$
$2 \mathrm{Ge}\left(5^{\prime \prime}\right)$	$3 \cdot 48 \pm 0.03$

* Arithmetic mean of distances to six nearest Ge or four nearest Rh atoms.

Fig. 1. A drawing of one unit cell each of four electron compounds: $\mathrm{TiSi}_{2}, \mathrm{Mn}_{11} \mathrm{Si}_{19}, \mathrm{Ru}_{2} \mathrm{Sn}_{3}$ and $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$. The subcell ratio $c_{\mathrm{T}} / c_{\mathrm{M}}$ decreases from left to right and has the values $2 \cdot 0,1 \cdot 727,1 \cdot 5$ and $1 \cdot 294$.
the graphical method mentioned above. After that the next three main cycles were run. The procedure was repeated five times. It was felt physically more realistic to determine the temperature factors this way rather than to allow each atom a different temperature factor which may have no physical meaning at all. After the first 9 main cycles it could be seen that an anisotropic temperature factor for the Rh atoms could improve the agreement for those reflections $h k l$ for which l is high. The refinement was considered to be final when the shifts of all parameters in the last three main cycles were less than the standard deviations computed from the inverse matrix. The final thermal factors are: Ge (isotropic) with $B=0 \cdot 5 \cdot 10^{-16} \mathrm{~cm}^{2}$ and Rh (anisotropic) with $B_{a}=0.17 \quad 10^{-16} \mathrm{~cm}^{2}$ and $B_{c}=0 \cdot 35.10^{-16}$ cm^{2} where B_{a} and B_{c} are defined by the following expression for the effective atomic scattering factor:

$$
f=f_{o} \cdot \exp \left\{-\left[\frac{B_{a}}{4 a^{2}}\left(h^{2}+k^{2}\right)+\frac{4 c^{2}}{B_{c}} \cdot l^{2}\right]\right\}
$$

The values of the atomic scattering factors f_{o} were taken from International Tables for X-ray Crystallography, Vol. III, Table 3.3.1 B, p.210. The final positional parameters and their standard deviations are given in Table 2. The agreement between observed and calculated structure factors may be observed in Table 3. The final value of the discrepancy index, $R=$ $\Sigma\left|F_{\mathrm{obs}}-\left|F_{\text {cal }}\right|\right| / F_{\mathrm{obs}}$, is 0.0912 , excluding those reflections for which intensities were too weak to be measured.

Description of the new structure

One unit cell of $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$ is shown on the right hand side of Fig. 1. The Rh atoms are indicated with filled circles and the Ge atoms with open circles. One easily recognizes the Rh subcells, stacked one on top of the next and consisting of four atoms each. Every Ge subcell contains two Ge dumb-bells which are alternately rotated in such a way that the atom arrangement in the subcell can be called, to a first approximation, facecentered tetragonal. However, in contrast t the rigid Rh subcell structures the Ge subcell structures differ slightly - one from the next - and may be also slightly rotated out of place.

The list of interatomic distances given in Table 4 reveals a strong interaction between Rh and Ge atoms.
$\mathrm{Rh}-\mathrm{Ge}$ distances as short as 2.37 ± 0.02 and $2.39 \pm$ $0.02 \AA$ were found. Such short $\mathrm{Rh}-\mathrm{Ge}$ distances have already been observed by Geller (1955) in $\mathrm{Rh}_{5} \mathrm{Ge}_{3}$ with $\mathrm{Rh}-\mathrm{Ge}=2.41 \AA$, and in this compound the coordination numbers were higher than they are for $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$. Geller also found a systematic decrease and increase respectively in the average distances $\mathrm{Rh}-\mathrm{Ge}$ and $\mathrm{Rh}-\mathrm{Rh}$ for the compounds $\mathrm{Rh}_{2} \mathrm{Ge}-\mathrm{Rh}_{5} \mathrm{Ge}_{3}-\mathrm{RhGe}$. If one compares the average of the distances of the six closest Ge atoms surrounding an Rh atom and the four relatively close Rh atoms which surround an Rh atom as listed in Table 5 one finds a consistent coherency for the compound $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$ as the Ge-richest compound of the system $\mathrm{Rh}-\mathrm{Ge}$.

Table 5. Average interatomic distances in $\mathrm{Rh}-\mathrm{Ge}$ compounds

Compound	$\mathrm{Rh}-\mathrm{Rh}$	$\mathrm{Rh}-\mathrm{Ge}$
$\mathrm{Rh}_{2} \mathrm{Ge}$	$2.82 \AA$	$2.57 \AA$
$\mathrm{Rh}_{5} \mathrm{Ge}_{3}$	2.84	2.54
RhGe^{2}	2.92	2.52
$\mathrm{Rh}_{17} \mathrm{Ge}_{22}$	3.03	2.50

The structural principle of $\mathbf{R h}_{17} \mathbf{G e}_{22}$ and related electron compounds

The term electron compounds is generally applied to intermetallic compounds which show a correlation between their stability range and the number or concentration of the participating electrons. Historically the well-known Hume-Rothery phases are the first known electron compounds where a certain value of the valence electron concentration has been connected with
the occurrence of a particular structure type. Many other electron compounds have been found since. Some of the best studied examples are the transition metal disilicides (Nowotny, 1963) or the $\beta-\mathrm{Mn}, \alpha-\mathrm{Mn}, \sigma$ and related complex phases (Bardos, Malik, Spiegel \& Beck, 1966) or the compounds with $\mathrm{Cu}_{3} \mathrm{Au}$ stacking variations (Schubert, 1964). Finally, it has been shown that the concept of the valence electron concentration can be extended to nonmetallic compounds as demonstrated in the case of tetrahedral structure compounds (Parthé, 1963, 1964).

The compound $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$ together with the silicides, germanides, stannides, aluminides and gallides listed in Table 6 and Fig. 2 are examples of a new kind of electron compound which can be derived from the TiSi_{2} structure and show a unique mechanism for varying the composition and the number of the valence electrons. As can be seen from the position of the plots in Fig. 2 one may distinguish three series of electron compounds. One is the isostructural series with TiSi_{2} (C54) structure type which extends horizontally across from TiSi_{2} to RuAl_{2}, containing also aluminosilicides and gallogermanides. The other two series are nonisostructural. The first of these is the series from TiSi_{2} to $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$ marked by filled circles, containing only compounds with 4B elements, that are silicides, germanides or stannides and the second is the series from RuAl_{2} to $\mathrm{Rh}_{10} \mathrm{Ga}_{17}$ marked by open circles, containing only compounds with 3B elements, that are aluminides and gallides.

First we will discuss the horizontal series (Fig. 2) of nine compounds all having the TiSi_{2} structure type

Fig. 2. The subcell ratio c_{T} / c_{M} and the composition of compounds TM_{x} (where $x=c_{\mathrm{T}} / c_{\mathrm{M}}$) as function of the group number of the T element.

Table 6. Structure data of the related electron compounds with a white tin structure arrangement of the pransition elements
 Number of
M subcells
2
2
2
2
2
2
2
2
2
31
16
23
7
26
19
19
17
5
3
22
5
 Number of
T subcells
 $\begin{gathered}c \\ (\AA) \\ 4.783 \dagger \\ 5.030 \dagger \\ 5.644 \dagger \\ 4.90_{1} \dagger \\ 4.79_{3} \dagger \\ 4.92_{1} \dagger \\ 4.51_{1} \dagger \\ 4.57{ }_{0} \dagger \\ 4.71_{5} \dagger \\ 4.749 \dagger \\ 83.65\end{gathered}$
43.995
63.54
18.09_{9}
65.837
52.34
48.136
47.4_{6}
14.20
9.915
78.45
18.24

5.91
5.994 5.99
5.73_{7}
5.539 5.80
5.518 5.81_{3}
5.823 $5 \cdot 82_{3}$
$6 \cdot 17$ $5 \cdot 60_{4}$ a and c values divided by $/ 2$
$\ddagger \begin{aligned} & \dagger \text { axis of orthorhombic unit cell. } \\ & \ddagger \text { In the original papers the compositions are given as } \\ & \mathrm{NbSi}_{1.4} \mathrm{Al}_{0.6}, \mathrm{MoAl}_{1.3} \mathrm{Si}_{0.7}, \mathrm{MoGa}_{1.4} \mathrm{Ge}_{0.6} \text { and } \mathrm{MnAl}_{1.3} \mathrm{Si}_{0.7} \text {. }\end{aligned}$ 1. Laves \& Wallbaum (1939). 2. Wallbaum (1944).
3. Nowotny \& Schachner (1953).
4. Nowotny, Benesovsky \& Brukl (1961).
5. Brukl, Nowotny, Schob \& Benesovsky
5. Brukl, Nowotny, Schob \& Benesovsky (1961).
6. Schubert, Meissner, Raman \& Rossteutscher (1964).
7. Schwomma, Nowotny \& Wittmann (1963).
8. Jeitschko, Holleck, Nowotny \& Benesovsky (1963).
7. Jeitschko, Holleck, Nowotny \& Benesovsky
9. Voellenkle, Wittmann \& Nowotny (1964).
11. Schwomma, Preisinger, Nowotny \& Wittmann (1964).
12. Schwomma, Nowotny \& Wittmann (1964).
13. Brown (1965).
15. Kuzma \& Nowotny (1964).
16. Voellenkle, Preisinger, Nowotny \& Wittmann (1966).
17. Voellenkle, Wittmann \& Nowotny (1966).
19. Knott, Mueller \& Heaton(1967).

These compounds are clearly electron compounds. It is not possible to state exactly the electron contribution of transition elements; however, it is obvious that Ti contributes less than Nb, Nb less than Mo and so on. In first approximation one can use the group number of the transition element as an indication of the valence electron contribution. Si or Ge with Ti , or Sn with its four electrons with Zr , can form the $C 54$ structure. However, with Nb some of the Si atoms have to be replaced with Al atoms having only three electrons. For Mo more of the Si or Ge atoms have to be replaced with Al or Ga atoms, while in the case of Ru no Si atoms can be used. The C 54 type occurs here with the dialuminide or the isoelectronic digallide. The series is a good example of a sequence of electron compounds having the same overall stoichiometry TB_{2} except for the lack of composition change of the aluminosilicide between the Mo and the Mn compound.

The second and third series in Fig. 2 present a new kind of electron compound sequence which has varying stoichiometry. Structure drawings of four compounds belonging to the second series: $\mathrm{TiSi}_{2}, \mathrm{Mn}_{11} \mathrm{Si}_{19}$, $\mathrm{Ru}_{2} \mathrm{Sn}_{3}$ and $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$, are shown in Fig. 1. Schematic drawings of the different subcells for $\mathrm{V}_{17} \mathrm{Ge}_{31}, \mathrm{Cr}_{11} \mathrm{Si}_{19}$, $\mathrm{Ru}_{2} \mathrm{Sn}_{3}$ and $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$ are presented in Fig. 3. Each of these structures consists of identical tetragonal transition metal subcells composed of four black T atoms. In TiSi_{2} there is only one such subcell, in one unit cell of $\mathrm{Mn}_{11} \mathrm{Si}_{19}$ there are eleven stacked one on top of the other, in $\mathrm{Ru}_{2} \mathrm{Sn}_{3}$ two and in $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$ seventeen. The number of subcells stacked in one unit cell is listed in Table 6 under the heading Number of T subcells, and their height under $c_{\mathrm{T}}(\AA)$. All these subcells are tetragonal except for the compounds with C54 structure type which actually have orthorhombic symmetry, but for the sake of systematics one may consider them pseudo-tetragonal.* In the TiSi_{2} unit cell shown in Fig. 1 there are eight Si atoms, arranged in two (to a first approximation) face centered subcells stacked one on top of the other, each containing four $\mathrm{M}(=\mathrm{Si}, \mathrm{Ge}$ or Sn) atoms. All the other structures shown in Fig. 1 or listed in Table 6 contain such M subcells; however, they are now more widely spaced and the M atoms may be slightly rotated from their ideal positions to avoid overlap with the atoms from the rather rigid transition metal partial structure. \dagger The number of M subcells within one unit cell is given in Table 6 under the heading Number of M subcells and their individual height in the following column.

The parameter of interest for the discussion of these compounds is the subcell ratio $c_{\mathrm{T}} / c_{\mathrm{M}}$ listed in the first

[^0]column of Table 6. The ratio is directly correlated with the composition of the compounds according to $\mathrm{TM}_{c_{\mathrm{T}}} / c_{\mathrm{M}}$. Actually, as the T and M subcell dimensions can be obtained with great accuracy from the powder diagram, it is possible to determine the compositions of the compounds much more accurately from X-ray diffraction data than by chemical analysis. As can be seen in Fig.2, the subcell ratio c_{T} / c_{M} varies with the group number of the transition element. For example, in the series of the germanides it decreases steadily from 2.0 for TiGe_{2} to 1.294 for $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$. The subcell ratios differ also depending on whether the M component is a 4B or a 3B element. The data points in Fig. 2 lie roughly in two sloped bands, one containing 4B compounds (completely filled circles) and another - vertically displaced - 3B compounds (completely open circles).
It seems that the change in composition and subcell ratio with a change in group number of the transition metal component, and the band shift in Fig. 2 between 4B and 3B compounds, can be explained in a simple manner. We may assume that the actual structuredetermining framework is the atomic arrangement of the transition metal atoms with the remaining atoms positioned in the available holes of the rigid T framework. To build this framework the T elements need additional electrons which are supplied by the B elements. As 4B elements can supply more electrons than the 3B elements, in comparison with 3B compounds the 4 B compounds will contain less of the M component, and this explains the shift in the bands between 4B and 3B compounds in Fig.2. It is interesting to note that one can calculate the corresponding compositions of 3B and 4B compounds and that correct results are obtained if one assumes that all the outer valence electrons of the B elements are placed at the disposal of the transition metal framework. If $\mathrm{T}_{1} \mathrm{M}_{x}^{3 \mathrm{~B}}$ and $\mathrm{T}_{1} \mathrm{M}_{y}^{4 \mathrm{~B}}$ are the corresponding compositions of the 3 B and 4 B electron compounds the simple relation is $3 x=4 y$; some results and examples are given in Table 7.

The change in composition and subcell ratio as a function of the group number of the transition metal

Fig. 3. Schematic drawing of the T and M subcells for $V_{17} \mathrm{Ge}_{31}$, $\mathrm{Cr}_{11} \mathrm{Si}_{19}, \mathrm{Ru}_{2} \mathrm{Sn}_{3}$ and $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$. T cell: solid lines, M cell: broken lines.
component within the band of 4 B compounds and also within the band of 3B compounds can be traced to the different numbers of electrons the different transition elements bring with themselves. If the transition metal itself has more electrons, less of the electron donor is needed and consequently the compound will contain less $\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}, \mathrm{Al}$ or Ga , the M subcell will be spaced wider, and the subcell ratio will be smaller. Irregularities occur with the Mn and Tc compounds. The deviations coincide with the deviations discussed above for the isostructural series with C54 type. In the case of molybdenum germanides two phases occur: $\mathrm{Mo}_{13} \mathrm{Ge}_{23}$ and $\mathrm{Mo}_{9} \mathrm{Ge}_{16}$, both having quite different tetragonal c axes, but rather similar subcell ratios.* Even very small changes in the electron demand of the transition metal may lead to big changes in the unit-cell dimensions as the translation period of the crystal must correspond to integral multiple units of T and M subcells. This demonstrates again that the important parameter for the discussion of these phases is the subcell ratio and not the actual size of the unit cells.

The above given interpretation of the electron compounds was that these compounds form if a certain number of electrons - provided together by the transition metal atoms and the 3 B or 4 B elements - is available for the construction of the rigid transition metal framework. We may test this assumption by calculating for each compound the total number of valence electrons per transition atom site. To obtain these values (given in the third column of Table 6) we inserted for the transition elements as a first approximation the total number of electrons outside the next lower inert gas configuration which is identical with the group number of the transition elements, except for Rh and Ir which were assumed to have 9 electrons each. Elements of the 4B and 3B groups were assumed to contribute 4 and 3 electrons respectively. If our assumption that these compounds occur only with a particular electron concentration on the transition atom sites is correct, all the electron compounds should have the same values for valence electrons per T atom site.

The experimental data are plotted in Fig. 4 against the group number of the transition metal component. Instead of the expected horizontal line, one finds that

[^1]the data plots are spread along a sloped line which increases from 12 for Ti and Zr compounds to about 14 for compounds of the Fe group. To Fig. 4 have been added plots for some new compounds recently reported by Voellenkle, Wittmann \& Nowotny (1966). The new Ru, Rh and Ir compounds are all electron compounds of the TiSi_{2} structure family with valence electron/T atom site ratios close to fourteen. To avoid overcrowding of the diagram not all reported compounds have been listed in Fig.4. One notices that in some cases different compounds of the same transition element have different values for valence electrons per T atom site, the biggest difference of 0.4 occurring between $\mathrm{Mo}_{9} \mathrm{Ge}_{16}$ and $\mathrm{Mo}_{3} \mathrm{Ga}_{4} \mathrm{Ge}_{2}$. However, it is perhaps not appropriate to compare the tetragonal phases with the orthorhombic phases having C54 structure. The orthorhombic distortion of the TiSi_{2} type cannot be explained. It is quite possible that the electron requirement for the orthorhombic transition metal framework is different from the requirement for the tetragonal framework. Thus, we will restrict all our further considerations only to the truly tetragonal phases. The biggest difference in values for valence electrons per T atom site, considering only tetragonal phases containing the same transition element, is $0 \cdot 2$, which is a rather small value.
The question arises whether Fig. 4 cannot perhaps be used to determine the actual relative valence electron contributions of the transition elements in the tetragonal compounds. We have seen that in principle there exist no restrictions on the particular $c_{\mathrm{T}} / c_{\mathrm{M}}$ values in these compounds. Slight changes in the valence electron contribution of the transition elements can easily be compensated by expanding or contracting the M subcell. Thus one wonders why the data in Fig. 4 do not fall on a horizontal line. The observed sloped line is obviously an indication that the approximation used above for the number of the transition metal valence electrons is not quite correct. The deviations of the values for valence electrons per T atom site in Fig. 4 from a horizontal line perhaps correspond to the deviations of the true electron contribution of the transition elements from the group number relation used for a first approximation. For example the group number difference between V and Rh is 4 , assuming group number 9 for Rh. According to the rough approximation Rh in $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$ should provide 4 electrons more for bonding than V in $\mathrm{V}_{17} \mathrm{Ge}_{31}$. However, the data points for these compounds in Fig. 4 show a valence electron per T atom site difference of $1 \cdot 88$. Therefore

Table 7. The corresponding compositions of 3B and 4B electron compounds

	$\mathrm{T}_{1} \mathrm{M}_{x}{ }^{3 \mathrm{~B}}$
Composition	Example
TM_{2}	RuGa_{2}
$\mathrm{~T}_{3} \mathrm{M}_{5}$	$\mathrm{Ir}_{3} \mathrm{Ga}_{5}$
$\mathrm{TM}_{1} \cdot 725$	$\left(\mathrm{Rh}_{10} \mathrm{Ga}_{17}\right.$) slight
	deviation from ideal
	value but very close.

$\mathrm{T}_{1} \mathrm{M}_{y}{ }^{4 \mathrm{~B}}$	
Composition	Example 2
$\mathrm{~T}_{2} \mathrm{M}_{3}$	$\mathrm{Ru}_{2} \mathrm{Sn}_{3}$
$\mathrm{~T}_{4} \mathrm{M}_{5}$	$\mathrm{Ir}_{4} \mathrm{Ge}_{5}$
$\mathrm{~T}_{17} \mathrm{M}_{22}$	$\mathrm{Rh}_{17} \mathrm{Ge}_{22}$

Rh in $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$ supplies only $4-1 \cdot 88=2 \cdot 12$ electrons more than V in $\mathrm{V}_{17} \mathrm{Ge}_{31}$.

The last result could also have been derived directly from the subcell ratios of the two compounds. The value for valence electrons per T atom site for $\mathrm{V}_{17} \mathrm{Ge}_{31}$ is

$$
(17 \times 5+31 \times 4) / 17=5+4 \times(31 / 17)
$$

or

$$
5+4 \times\left(c_{\mathrm{T}} / c_{\mathrm{M}}\right)_{\mathrm{V}_{17} \mathrm{Ge}_{31}}
$$

This value should be equal to

$$
5+\Delta+4 \times\left(c_{\mathrm{T}} / c_{\mathrm{M}}\right)_{\mathrm{Rh}_{17} \mathrm{Ge}_{31}}
$$

where Δ is the difference in the true valence electron contribution of Rh in $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$ from that of V in $\mathrm{V}_{17} \mathrm{Ge}_{31}$. Thus one obtains

$$
\Delta=4 \times\left[\left(c_{\mathrm{T}} / c_{\mathrm{M}}\right) \mathrm{V}_{17 \mathrm{Ge} 31}-\left(c_{\mathrm{T}} / c_{\mathrm{M}}\right)_{\mathrm{Rh}_{17 \mathrm{Ge} 22}}\right]
$$

or with actual numbers

$$
\Delta=4 \times\left(1 \cdot 823_{5}-1 \cdot 294_{1}\right)=2 \cdot 11_{7} .
$$

The factor 4 in the equation above comes from our assumption that Ge contributes 4 electrons to the bonding scheme. This assumption appears to be valid as it allows us to calculate correctly the compositions of corresponding 4 B and 3 B compounds shown in Table 7. The factor has to be changed appropriately to 3 if gallides are to be compared with other gallides. It is evident that the true valence electron contribution of V in $\mathrm{V}_{17} \mathrm{Ge}_{31}$ does not need to be known for these calculations.

With the analytical expression above or data points from Fig. 4 the relative valence electron contributions
of the transition elements in the tetragonal electron compounds listed in Table 6 have been calculated with the valence electron contribution of V in $\mathrm{V}_{17} \mathrm{Ge}_{31}$ as reference point. The results are shown in Table 8. The numbers listed are the numbers of electrons (or fractions thereof) a particular transition element in a particular compound provides to the bonding scheme in excess of all the electrons provided by V in $\mathrm{V}_{17} \mathrm{Ge}_{31}$. The data are presented graphically in Fig. 5. The valence electron contribution of the transition metal atoms increases very slowly up to the group 7 elements. Cr in $\mathrm{Cr}_{11} \mathrm{Ge}_{19}$ and Mn in $\mathrm{Mn}_{11} \mathrm{Si}_{19}$ actually provide the same number of valence electrons. Beyond group 7 the valence electron contribution increases by one electron for every group. This is clearly demonstrated in the series $\mathrm{Tc}_{4} \mathrm{Si}_{7}, \mathrm{Ru}_{2} \mathrm{Sn}_{3}$ and $\mathrm{Ir}_{4} \mathrm{Ge}_{5}$ with the relative

Fig.5. The valence electron contribution of the transition elements in excess of the valence electron contribution of V in $\mathrm{V}_{17} \mathrm{Ge}_{31}$.

Fig.4. The values of valence electrons per T atom site for the new electron compounds versus the group number of the transition metal component.
transition metal electron contributions of $0 \cdot 29_{4}, 1 \cdot 29_{4}$ and $2 \cdot 29_{4}$. The relative valence electron contributions of the different transition metals in their different compounds fall within narrow limits on the dashed line in Fig. 5.

Table 8. The relative valence electron contributions of the transition elements in reference to the contribution of V in $\mathrm{V}_{17} \mathrm{Ge}_{31}$

Mo in $\mathrm{Mo}_{9} \mathrm{Ge}_{16}$	$0 \cdot 18_{3}$	Ru in $\mathrm{Ru}_{2} \mathrm{Sn}_{3}$	1.29_{4}
Mo in $\mathrm{Mo}_{13} \mathrm{Ge}_{23}$	0.21_{7}	Rh in $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$	$2 \cdot 11_{7}$
Tc in $\mathrm{Tc}_{4} \mathrm{Si}_{7}$	0.29_{4}	Rh in $\mathrm{Rh}_{10} \mathrm{Ga}_{17}$	2.19_{4}
Mn in $\mathrm{Mn}_{15} \mathrm{Si}_{26}$	0.36_{1}	Ir in $\mathrm{Ir}_{4} \mathrm{Ge}_{5}$	2.29_{4}
Cr in $\mathrm{Cr}_{11} \mathrm{Ge}_{19}$	0.38_{5}	Ir in $\mathrm{Ir}_{3} \mathrm{Ga}_{5}$	2.29_{4}
Mn in $\mathrm{Mn}_{11} \mathrm{Si}_{19}$	0.38_{5}		

An ideal case is presented by iridium, which always contributes exactly the same number of valence electrons. It is perhaps of interest to note that one can use this to calculate the compositions of new Ir compounds. For example, the relative valence electron contribution of Ir in $\mathrm{Ir}_{4} \mathrm{Ge}_{5}$ and $\mathrm{Ir}_{3} \mathrm{Ga}_{5}$ is $2 \cdot 29_{4}$ and the relative valence electron contribution of Rh in $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$ is $2 \cdot 11_{7}$. If one intends to synthesize an iridium germanide with $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$ structure a small percentage of the Ge atoms would have to be replaced with - let us assume - Ga atoms, which provide only 3 electrons each. We can actually calculate what the composition of the gallogermanide with $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$ structure should be. If we write for its formula $\operatorname{Ir}_{17}\left(\mathrm{Ge}_{1-x} \mathrm{Ga} x\right)_{22}$ we can formulate mathematically the total valence electron concentration at the Ir atom sites as

$$
\begin{gathered}
\text { (Electron contribution })_{\mathrm{V} \text { in }}^{\mathrm{V}_{17} \mathrm{Ge}_{3}}+2 \cdot 29_{4}+(22 / 17) \\
\times[4 \times(1-x)+3 x] .
\end{gathered}
$$

The value must be the same as the total valence electron concentration on the Rh sites in $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$ which is given by
(Electron contribution) $\mathrm{V}_{\text {in }} \mathrm{V}_{17 \mathrm{Ge} 31}+2 \cdot 11_{7}+(22 / 17) \times 4$.
The equation can be solved for x; the composition so found for an expected iridium gallogermanide with $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$ structure is $\mathrm{Ir}_{17}\left(\mathrm{Ge}_{0.863} \mathrm{Ga}_{0.137}\right)_{22}$. Voellenkle, Wittmann \& Nowotny (1966) have just reported that they found the $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$ structure for an iridium gallogermanide of composition $\operatorname{Ir}_{17}\left(\mathrm{Ge}_{0.85} \mathrm{Ga}_{0 \cdot 15}\right)_{22}$, in excellent agreement with the theoretical value.

The same paper gives the lattice constants and T metal subcell dimensions of three additional iridium gallogermanides which belong to the same group of electron compounds and have compositions between $\mathrm{Ir}_{4} \mathrm{Ge}_{5}$ and $\mathrm{Ir}_{3} \mathrm{Ga}_{5}$. Their ratio of T metal to M metal was determined very accurately from the X-ray data. We can use this information to calculate for each compound what the proper mixing ratio Ge : Ga should be. If the formula of the gallogermanide is written $\operatorname{Ir}_{[}\left[\mathrm{Ge}_{1-x} \mathrm{Ga}_{x}\right]_{\mathrm{M}}$, and if we assume that each Ir atom in all iridium gallogermanides always contributes the same number of valence electrons to the bonding
scheme all iridium gallogermanides must have the same value of

$$
(\mathrm{M} / \mathrm{T}) \cdot[4(1-) x+3 x],
$$

which can easily be solved for x. Table 9 contains a list of the observed and the calculated iridium gallogermanide compositions. The agreement is very good except for a small deviation between observed and calculated composition for $\mathrm{Ir}_{2}(\mathrm{Ge}, \mathrm{Ga})_{3}$. However, according to Voellenkle, Wittmann \& Nowotny (1966), this compound - although belonging to the electron compounds - has an irregular unit cell in which the tetragonal a axis is doubled. Therefore some details of the substructure in $\mathrm{Ir}_{2}(\mathrm{Ge}, \mathrm{Ga})_{3}$ must be different from the substructures of the other electron compounds, and thus we should not necessarily expect the valence electron rules to be applicable to $\mathrm{Ir}_{2}(\mathrm{Ge}, \mathrm{Ga})_{3}$ without any modification.

Table 9. Observed and calculated composition of the series of electron compounds between $\mathrm{Ir}_{4} \mathrm{Ge}_{5}$ and $\mathrm{Ir}_{3} \mathrm{Ga}_{5}$

Observed compositions	Calculated compositions
$\mathrm{Ir}_{4} \mathrm{IE}_{4} \mathrm{Ge}_{5}$	Ir_{4}
$\mathrm{Ir}_{1}\left(\mathrm{Ge}_{0.85} \mathrm{Ga}_{0.15}\right)_{22}$	$\mathrm{Ir}_{17}\left(\mathrm{Ge}_{0.863} \mathrm{Ga}_{0.137}\right)_{22}$
$\mathrm{Ir}_{11}\left(\mathrm{Ge}_{0.65} \mathrm{Ga}_{0.35}\right)_{15}$	$\mathrm{Ir}_{11}\left(\mathrm{Ge}_{0.666} \mathrm{Ga}_{0.333}\right)_{15}$
$\mathrm{Ir}_{2}\left(\mathrm{Ge}_{0.40} \mathrm{Ga}_{0.60}\right)_{3}$	$\mathrm{Ir}_{2}\left(\mathrm{Ge}_{0.333} \mathrm{Ga}_{0.666}\right)_{3}$
$\mathrm{Ir}_{19}\left(\mathrm{Ge}_{0.20} \mathrm{Ga}_{0.80}\right)_{30}$	$\mathrm{Ir}_{19}\left(\mathrm{Ge}_{0.166} \mathrm{Ga}_{0.833}\right)_{30}$
$\mathrm{Ir}_{3} \mathrm{Ga}_{5}$	$\mathrm{Ir}_{3} \mathrm{Ga}_{5}$

It was shown above that the new electron compounds present a unique case in which the relative valence electron contributions of the different transition elements can be determined very simply by measuring the positions of X-ray diffraction lines. It would be of extreme interest to know if these values can be substantiated by low temperature specific heat measurements or other physical experiments.

This study is a contribution from the Laboratory for Research on the Structure of Matter, University of Pennsylvania, supported by the Advanced Research Projects Agency, Office of the Secretary of Defense. The work on $\mathrm{Rh}_{17} \mathrm{Ge}_{22}$ was started by one of us (E.P.) during his short stay at the Chemical Institute of the University of Uppsala, Sweden, in 1958. He would like to acknowledge the financial support he obtained there from the Swedish State Council of Technical Research and the cordial hospitality of Drs Aronsson and Rundquist of Uppsala University. Thanks are also due to Drs Hammer and Schob and Mr Hohnke, who participated in the initial phases of the structure determination.

References

Aubry, J., Duval, R. \& Roques, B. (1965). C. R. Acad. Sci. Paris, 261, 2665.
Bardos, D. I., Malik, R. K., Spiegel, F. X. \& Beck, P. A. (1966). Trans. AIME, 236, 40.

Bhan, S. \& Schubert, K. (1960). Z. Metallk. 51, 327.

Brown, A. (1965). Nature, Lond. 206, 502.
Brukl, C., Nowotny, H., Schob, O. \& Benesovsky, F. (1961). Mh. Chem. 92, 781.

Buerger, M. J. (1960). Crystal Structure Analysis, p. 232. New York: John Wiley.
Duffin, W. J., Parthé, E. \& Norton, J. T. (1964). Acta Cryst. 17, 450.
Gantzel, P. K., Sparks, R. A. \& Trueblood, K. N. (1961). Univ. of California Program UCLALS1.
Geller, S. (1955). Acta Cryst. 8, 15.
Jeitschko, W., Holleck, H., Nowotny, H. \& Benesovsky, F. (1963). Mh. Chem. 94, 838.

Jeitschko, W. \& Parthé, E. (1966). A Fortran IV Program for the Intensity Calculation of Powder Patterns. Report of the Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pa., U.S.A.
Kane, G. \& Cole, W. F. (1949). Acta Cryst. 2, 38
Knott, H. W., Mueller, M. H. \& Heaton, L. (1967). Acta Cryst. Submitted for publication.
Kuzma, J. B. \& Nowotny, H. (1964). Mh. Chem. 95, 1266.

Laves, F. \& Wallbaum, H. J. (1939). Z. Kristallogr. A101, 78.

Nevitt, M. V. (1963). In Electronic Structure and Alloy Chemistry of the Transition Elements. New York: John Wiley.
Nowotny, H. (1963). In Electronic Structure and Alloy Chemistry of the Transition Elements, p.179. New York: John Wiley.
Nowotny, H., Benesovsky, F. \& Brukl, C. (1961). Mh. Chem. 92, 193.

Nowotny, H., Kudielka, H. \& Parthé, E. (1956). 2nd Plansee Seminar, edited by F.Benesovsky, page 166. Vienna: Springer.
Nowotny, H. \& Schachner, H. (1953). Mh. Chem. 84, 169.

Parthé, E. (1963). Z. Kristallogr. 119, 204.
Parthé, E. (1964). Crystal Chemistry of Tetrahedral Structures. New York: Gordon and Breach.
Schubert, K. (1964). Kristallstrukturen zweikomponentiger Phasen, p.94. Berlin: Springer.
Schubert, K. Meissner, H. A., Raman, A. \& RossteutSCHER, W. (1964). Naturwissenschaften, 51, 287.
Schwomma, O., Nowotny, H. \& Wittmann, A. (1963). Mh. Chem. 94, 924.
Schwomma, O., Nowotny, H. \& Wittmann, A. (1964). Mh. Chem. 95, 1538.
Schwomma, O., Preisinger, A., Nowotny, H. \& Wittmann, A. (1964). Mh. Chem. 95, 1527.

Voellenkle, H., Preisinger, A., Nowotny, H. \& Wittmann, A. (1966). Paper presented at Seventh General Assembly, International Union of Crystallography, Moscow 1966.
Voellenkle, H., Wittmann, A. \& Nowotny, H. (1964). Mh. Chem. 95, 1544.
Voellenkle, H., Wittmann, A. \& Nowotny, H. (1966). Mh. Chem. 97, 506.
Wallbaum, H. J. (1944). Naturwissenschaften, 32, 76.
Wittmann, A. \& Nowotny, H. (1965). J. Less-Common Metals, 9, 303.
Zhuravlev, N. N. \& Zhdanov, G. S. (1956). Kristallografiya, 1, 205.

Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1967). 22, 430
Trioctahedral one-layer micas. III. Crystal structure of a synthetic fluormica. Errata. By Hroosh Takeda* and J.D.H.Donnay, The Johns Hopkins University, Baltimore, Maryland 21218, U.S.A.
(Received 23 October 1966)
Corrections to Acta Cryst. 20, 638 (1966),

The following corrections should be made in our paper on synthetic fluormica (Takeda \& Donnay, 1966):
p. 641, col.2, line 11 and p.643, col.1, line 20 up: instead of $1 / 2 \sigma^{2}$, read $1 /(2 \sigma)^{2}$.

* Present address: Mineralogical Institute, University of Tokyo, Hongo, Tokyo, Japan.
p.641, Table 3(a), line 7: instead of -0.007 , read -0.07 .
p.643, Table 8 , lines 3 and 8 : instead of v, read v. p. 645, col. 2 , lines 8 and 10 : instead of γ, read v. p. 645, col. 2, line 13: instead of a, b, c^{*}, read $\mathbf{a}, \mathbf{b}, \mathbf{c}^{*}$.

Reference

Takeda, H. \& Donnay, J. D. H. (1966). Acta Cryst. 20, 638.

[^0]: * The crystal structure of TiSi_{2} (C54 type) is based on a face centered orthorhombic Bravais lattice. However, if a and c values of TiSi_{2} are tentatively assumed to have equal length, the structure can be considered as being face centered tetragonal. The corresponding smaller body centered tetragonal unit cell is shown at the left of Fig. 1.
 \dagger The dimensions of the M subcell can be easily calculated from the 111 and 002 M -subcell reflections which are observed to be strong in all diffraction patterns.

[^1]: * The possibility of an electron change in Mo compounds was also recently demonstrated by Aubry, Duval \& Roques (1965) who surprisingly found the C40 type for MoSi_{2}, while the C11 type is considered normal. These two types are known to be controlled by valence electron concentration.

